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I. INTRODUCTION

The detailed study of hydrogen atom emission spectra
was essential for the understanding of quantum electro-
dynamics. This is partially due to the simple composition
of the hydrogen, consisting of just two particles, and par-
tially due to the large mass difference between the proton
and the electron, which mostly decouples the proton spin
from the electron spin. As a consequence, the fine and
hyperfine structures of hydrogen atoms are characterized
by significantly different energy scales. Similarly, the de-
tailed study of mesons composed of a heavy and a light
valence quark supports the understanding of quantum
chromodynamics and the limitations of its low-energy
approximations, such as the heavy quark effective the-
ory (HQET) [1]. The spectroscopy of B(s) mesons, which

contain a b quark and a u or d (or s) quark, provides an
important testing ground for HQET.

The ground state B(s) mesons and the spin-1 B∗(s)
mesons have been thoroughly studied [2]. This paper
studies the states with orbital angular momentum L = 1
and a possible radially excited state. For each type of B
meson, four distinct states with L = 1 are possible, each
with different couplings between the spin of the quarks
and the orbital angular momentum. Assuming the bot-
tom quark to be heavy, HQET predicts that the dynamics
is dominated by the coupling between the orbital angular
momentum and the spin of the light quark that combine
to a total light-quark angular momentum j = 1

2 or j = 3
2 ,

which corresponds to the fine structure in the hydrogen
atom. Additional contributions arise due to the spin of
the b quark. This results in two doublets of states, corre-
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sponding to fine- and hyperfine-splitting, that are collec-
tively referred to as B∗∗(s) mesons. The states with j = 1

2

are named B∗0 (J = 0) and B1 (J = 1) mesons; the
states with j = 3

2 are named B1 (J = 1) and B∗2 (J = 2)
mesons, where J is the total angular momentum.

In HQET, different results originate from various ap-
proximations adopted in the calculation of the light-
quark degrees of freedom. Such calculations can neglect
or include relativistic effects as well as the dynamical spin
dependence of the potential between the quarks. While
most of the recent predictions are based on HQET [3–
7], other approaches exist, including predictions using
lattice-gauge calculations [8, 9], potential models [10, 11],
heavy quark symmetry (HQS) [12], chiral theory [13, 14],
and QCD strings [15], allowing the masses, widths, and
relative branching ratios to be calculated. Predictions of
B∗∗(s) properties are shown in Tables I and II.

TABLE I: Predicted B∗∗(s) masses. All values are in MeV/c2.

Calculation Ref. B0,+
1 B∗0,+2 B0

s1 B∗0s2

HQET [3] 5700 5715

HQET [4] 5780± 40 5794± 40 5886± 40 5899± 49

HQET [5] 5623 5637 5718 5732

HQET [6] 5720 5737 5831 5847

HQET [7] 5719 5733 5831 5844

Lattice [8] 5732± 33 5772± 29 5815± 22 5845± 21

Lattice [9] 5892± 52 5904± 52

Potential [10] 5699 5704 5805 5815

Potential [11] 5780 5800 5860 5880

HQS [12] 5755 5767 5834 5846

Chiral theo. [14] 5774± 2 5790± 2 5877± 3 5893± 3

QCD string [15] 5716 5724

TABLE II: Predicted B∗∗(s) widths. All values are in MeV/c2.

Ref. B0,+
1 B∗0,+2 B0

s1 B∗0s2

[4] 16± 5 2.8± 1.2 7± 3

[5] 20 29

[11] 27 1.9

[12] 31 – 55 38 – 63 1 – 3 3 – 7

[14] 43± 10 57.3± 13.5 3.5± 1.0 11.3± 2.6

The B∗∗0,+ states with j = 1
2 can decay to B(∗)π fi-

nal states via an S-wave transition and therefore are ex-
pected to be too broad to be distinguishable from back-
ground at current experiments, while the j = 3

2 states
decay via a D-wave. Decays via P -wave are incompati-
ble with parity conservation, as B∗∗(s) states have positive

parity.
As the B∗2 can decay either to Bπ or B∗π final states,

and the low-energy photon from the B∗ → Bγ decay is
typically not reconstructed, the decays of this state yield

two structures in the Bπ invariant mass spectrum. The
orbital excitations of B0

s mesons are expected to have the
same phenomenology as those of B0,+ mesons. They de-
cay to B0K̄0 and B+K− final states, but not to B0

sπ
0,

due to isospin conservation in the strong-interaction de-
cay. Throughout this paper, charge conjugate states are
implied. The spectrum and possible decays of B∗∗0,+

mesons are illustrated in Fig. 1.

FIG. 1: Spectrum and allowed decays for the lowest orbitally
excited states B∗∗0,+. For B∗∗0s mesons the pion is replaced
by a kaon and the states have higher masses.

Orbitally excited B mesons were first observed in
electron-positron collisions at LEP in 1995 [16–19]. Teva-
tron experiments in proton-antiproton collisions observed
three structures in the B0π+ invariant-mass distribution
that were associated with the j = 3

2 B∗∗0 meson states
in the HQET approximation. A 2.8σ discrepancy is ob-
served between measurements of the mass difference of
the B∗02 and B0

1 states by the D0 [20] and CDF Collab-
orations [21] using 1.3 fb−1 and 1.7 fb−1 of data, respec-
tively. While CDF measured ∆m(B∗∗0) = mB∗0

2
−mB0

1
=

14.9+2.2
−2.5(stat)

+1.2
−1.4(syst) MeV/c2, D0 found ∆m(B∗∗0) =

26.3± 3.1(stat)± 0.9(syst) MeV/c2.
The B0

s1 state was discovered by CDF [22] using 1 fb−1

of data. The decay of the B∗0s2 state to a B+K− final
state was first observed by CDF [23] and D0 [24], while
the B∗+K− decay was only recently observed by LHCb
[25]. Charged B∗∗+ states have not been observed so
far. Preliminary measurements of B∗∗0,+ properties were
reported by LHCb [26].

This paper reports measurements of masses, natural
widths, and relative production rates of orbitally excited
B∗∗0, B∗∗+, and B∗∗0s mesons. For rate measurements we
define the product of the B1 production rate relative to
the B∗2 rate times the branching fractions of the observed
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decays,

rprod =
σ(B1)

σ(B∗2)
· B(B1 → B∗h)

B(B∗2 → Bh) + B(B∗2 → B∗h)
, (1)

where σ is the production cross-section restricted to the
relevant kinematic regime, and h identifies π for B∗∗0,+

and K for B∗∗0s decays. We also define the relative B∗s2
branching fraction

rdec =
B(B∗s2 → B∗+K−)

B(B∗s2 → B+K−)
. (2)

Ground-state B mesons are reconstructed in seven differ-
ent decay modes and combined with an additional pion
(kaon) to form B∗∗(s) candidates. Selections based on ar-

tificial neural networks are performed to enrich the B∗∗(s)
signal fractions in the samples. The properties of the
B∗∗(s) states are determined from fits to mass difference
spectra.

II. DATA SAMPLE AND EVENT SELECTION

We use data from pp collisions at
√
s = 1.96 TeV

recorded by the CDF II detector at the Fermilab Teva-
tron corresponding to the full Run II integrated luminos-
ity of 9.6 fb−1. The key components of the CDF II detec-
tor [27] for these measurements are the charged-particle
trajectory (tracking) subdetectors located in a uniform
axial magnetic field of 1.4 T, together with the muon de-
tectors. A single-sided silicon-strip detector mounted di-
rectly on the beam pipe at 1.5 cm radius and six layers of
double-sided silicon strips extending to a radius of 22 cm
[28] provide a resolution of approximately 40 µm on the
impact parameter, defined as the distance between the
interaction point and the trajectory of a charged par-
ticle, projected into the plane transverse to the beam.
This includes a 32 µm contribution from the transverse
beam size [28]. An open-cell drift chamber, which cov-
ers a radius range of 45 to 137 cm [29], allows precise
measurement of the momentum of charged particles with
a resolution of σ(pT )/p2T ≈ 0.1%/(GeV/c). Outside the
tracking detectors, time-of-flight detectors, and calorime-
ters, muons are detected in planes of drift tubes and scin-
tillators [30]. Charged-particle identification information
is obtained from the ionization energy deposition in the
drift chamber and the measurement of the flight time of
particles [31, 32].

A three-layer online event-selection system (trigger) is
implemented in hardware and software. Recording of the
events used in this measurement is initiated by two types
of triggers, a J/ψ trigger [33] and a displaced-track trig-
ger [34]. The J/ψ trigger is designed to record events
enriched in J/ψ → µ+µ− decays and requires two tracks
in the drift chamber geometrically matched to track seg-
ments in the muon detectors. The particles must have
opposite charge; a transverse momentum pT larger than

1.5 or 2.0 GeV/c, depending on subdetector and data tak-
ing period; an azimuthal opening angle below 135◦; and
a dimuon mass compatible with the known J/ψ-meson
mass. The displaced-track trigger requires two tracks
with impact parameters typically between 0.12 to 1 mm,
a luminosity-dependent lower threshold on the scalar sum
of transverse momenta of typically 4.5 to 6.5 GeV/c, and
an intersection point displaced at least 0.2 mm from the
primary-interaction point in the transverse plane. These
criteria preferentially select events with decays of long-
lived hadrons.

Tracks are reconstructed with a pion mass hypothe-
sis accounting for multiple scattering and energy loss.
In the first step of the analysis, we refit them also un-
der the kaon-mass hypothesis. Combinations of two or
three tracks constrained to originate from the same space

point are formed to reconstruct J/ψ → µ+µ−, D
0 →

K+π−, D− → K+π−π−, K∗(892)0 → K+π−, and

K0
S → π+π− decays, where the J/ψ and D

0
candidate

masses are constrained to their known values [2]. Next, B
mesons are formed in the following seven decay modes:

B+ → J/ψK+, B+ → D
0
π+, B+ → D

0
(π+π−)π+,

B0 → J/ψK∗(892)0, B0 → J/ψK0
S , B0 → D−π+,

and B0 → D−(π+π−)π+. Finally, we reconstruct B∗∗(s)
mesons in the B∗∗0 → B(∗)+π−, B∗∗+ → B(∗)0π+ and
B∗∗s → B(∗)+K− channels. Because the photon from the
B∗ → Bγ decay is too low in energy to be detected,
B∗ mesons are partially reconstructed as B mesons.
This reduces the reconstructed B∗∗(s) mass by approxi-

mately 46 MeV/c2, the mass difference between B∗ and
B mesons. To improve the mass resolution, we use the
Q value, defined as Q = m(Bh)−m(B)−mh instead of
m(Bh) to determine the resonance parameters because
it reduces the effect of the B reconstruction resolution.

Because the various B-meson decay channels have dif-
fering topologies, we optimize the selection separately for
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FIG. 2: Invariant Kππ-mass distribution of B+ → D
0
(→

K−π+)π+ candidates after the application of loose require-
ments with fit result overlaid.
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each channel. First, we apply modest requirements on
quantities providing significant signal-to-background sep-
aration, such as transverse momentum, transverse flight
length, impact parameter, and vertex fit quality of the B
candidate; and transverse momenta of the final-state par-
ticles, so that B meson signals become visible in the mass
spectra. An example is shown in Fig. 2. The resulting
mass distributions are then fit with a linear or exponen-
tial background model and one or two Gaussians as a
signal model, depending on the B decay mode. The ab-
solute numbers of signal and background candidates, as
well as the distributions as a function of m(B) for signal
and background, are derived from the fit. This informa-
tion is used to calculate sPlot weights [35]. When applied
to distributions of quantities that are not correlated with
m(B), these weights allow the extraction of statistically-
pure distributions of these quantities for signal and back-
ground separately. Observed events and their weights are
input to a multivariate classifier [36], allowing training
based on data only. Topological, kinematic, and particle
identification quantities of the B mesons and their final-
state particles are used as input variables. Due to the
lifetime of the B mesons, the variables with the most
discriminating power are flight length, impact param-
eter, and vertex-fit quality of the B-meson candidate.
Additional inputs are the transverse momenta and parti-
cle identification information of pions, kaons, and muons
and invariant masses of intermediate decay products such
as D and J/ψ mesons. A moderate requirement is ap-
plied on the discriminator’s output to remove candidates
formed using random combination of tracks that meet
the candidate’s selection requirements. For the data set
shown in Fig. 2, this requirement rejects 74% of the back-
ground while retaining 97% of the signal. In addition,
the information from the discriminator’s output is fur-
ther used in the B∗∗(s) selection.

For the optimization of the selection of B∗∗(s) mesons, we

rely on simulations of B∗∗(s) decays with the full CDF II de-

tector geometry. The primary B∗∗(s) particle is generated

using measured b-hadron kinematic distributions [27]. Its
decay to B(∗)h with h = π,K and the subsequent B-
meson decay are simulated with EvtGen [37]. The de-
tector is simulated with GEANT [38].

The neural network is trained to separate B∗∗(s) signal

from background using simulations as signal and B∗∗(s)
candidates observed in data, which contain a negligible
signal fraction, as background. Only quantities of the
B∗∗(s) meson and the additional pion or kaon and ground-

state B meson mass are used as discriminating variables.
To avoid biasing the training to a certain mass range,
simulated events are generated with the same Q-value
distribution as the background in data.

The final selection is made by imposing a requirement
on the output of the discriminator for each B∗∗(s) decay

channel. The requirement is chosen by optimizing the
figure of merit NMC/

√
N , where NMC corresponds to

the number of selected simulated signal events and N

is the number of observed events in the signal region
305 < Q < 325 MeV/c2 for B∗∗0 and B∗∗+ decays and
62 < Q < 72 MeV/c2 for B∗∗0s decays. For B∗∗0 and
B∗∗+ candidates, the data sample is divided into a sub-
sample with one candidate per event and a subsample
with multiple candidates per event to increase sensitivity,
as resulting from the better signal-to-background ratio in
the single-candidate subsample. The multiple-candidate
events amount to 40-50% of the samples. The resulting
B∗∗(s)-meson spectra are shown in Figs. 3 to 5.

As in earlier measurements [21, 23], the narrow state at
the lowest Q-value is interpreted as the B1 → B∗h signal
and the two higher Q-value structures as B∗2 → B∗h and
B∗2 → Bh signals. In the B∗∗0,+ spectrum, the two lower
Q-value signals overlap. At Q values around 550 MeV/c2

a broad structure is visible, in both the B∗∗0 and B∗∗+

invariant-mass distributions.
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FIG. 3: Distribution of Q-value of B∗∗0 candidates (and
B+π+ combinations in the upper plot) with fit results over-
laid. The upper panel shows the data summed over decay
channels and the deviations of these from the fit function, nor-
malized to the fit uncertainty. The lower panels show data and
fits for each decay channel individually, separated into events
with one candidate (upper row) and with multiple candidates
(lower row).
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over decay channels and the deviations of these from the fit
function, normalized to the fit uncertainty. The lower panels
show data and fits for each decay channel individually, sep-
arated into events with one candidate (upper row) and with
multiple candidates (lower row).

III. Q-VALUE FIT

We use a maximum-likelihood fit of the unbinned Q-
value distributions to measure the properties of the ob-
served structures. Separate fits are performed for B∗∗0,
B∗∗+, and B∗∗0s mesons. For each flavor, the spectra for
several B-meson decay channels are fit simultaneously.
Each Q-value distribution is fit with the sum of various
signals components and a background component. The
signal parameters are the same in all spectra, while indi-
vidual background parameters are used in each subsam-
ple. For the background component we use a Γ func-
tion [39] for the B∗∗0,+ spectra and a polynomial for the
B∗∗0s spectra. The order of the polynomial is determined
by increasing it until no significant improvement in fit
quality is achieved.

Each B signal is described by a nonrelativistic Breit-
Wigner shape whose parameters are free in the fit, con-
voluted with a double Gaussian that accounts for the de-
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FIG. 5: Distribution of Q-value of B∗∗0s candidates with fit
results overlaid. The upper panel shows the data summed
over decay channels and the deviations of these from the fit
function, normalized to the fit uncertainty. The lower panels
show data and fits for each decay channel individually.

tector resolution and whose parameters are determined
from simulation. In order to determine directly the rela-
tive rates, the relative efficiencies for reconstructing the
various B∗∗(s) states, determined from simulation, are in-

cluded in the fit model. The relative normalization of
the B decay channels is free in the fit. Because the de-
scription of the data in terms of the known contribu-
tions and a smooth background is unsatisfactory in the
500 < Q < 600 MeV/c2 range of the spectrum, we in-
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troduce an additional broad structure whose model is a
nonrelativistic Breit-Wigner function convoluted with a
single Gaussian. The yield of the broad structure is mea-
sured relative to the B∗2 → Bπ yield.

As in previous measurements [21], external inputs from
independent experimental measurements and theoretical
assumptions are used in the fit to resolve the ambiguity
due to the overlapping B∗∗0,+ signal structures. The dif-
ference between the mean mass values of the B∗2 → Bh
and B∗2 → B∗h signal structures is constrained to the
value of mB∗+ −mB+ = 45.01± 0.30± 0.23 MeV/c2 for
B+ mesons [2] and to the flavor-averaged value of mB∗−
mB = 45.8±1.5 MeV/c2 in the case for B0 mesons, where
the limit |(mB∗+ −mB+)− (mB∗0 −mB0)| < 6 MeV/c2

at 95% C.L. is used to estimate the uncertainty.
In the B∗∗0,+ fits, the relative branching fraction

B(B∗2 → Bπ)/B(B∗2 → B∗π) = 1.02± 0.24 is used. This
is derived from the corresponding value in D-meson de-
cays, B(D∗2 → Dπ)/B(D∗2 → D∗π) = 1.56 ± 0.16, by
taking into account the difference in phase space and
the properties of the D-wave decay [2]. The relative
branching fraction is expressed as B(B∗2 → Bπ)/B(B∗2 →
B∗π) = Fb (kB/kB∗)

5
, where kX is the momentum of the

pion in the rest frame of the particle X and Fb is the ra-
tio of the form factors for the two decays. Due to heavy
quark symmetry, the relation Fb = Fc is assumed, where
a calculation with a Blatt-Weisskopf form factor with a
radius parameter of R = 3.5 GeV−1 [40] is used to esti-
mate the uncertainty of this relation.

In the B∗∗0 fit, a component for misreconstructed B∗∗0s

mesons in which the low-energy kaon from the B∗∗0s de-
cay is reconstructed as a pion is added. The shape is
determined from simulation. The yield is determined as
the product of the probability for B∗∗0s mesons to meet
the B∗∗0 selection criteria and be reconstructed as B∗∗0

candidates, determined from simulations, times the B∗∗0s

yield observed in data. The misreconstruction of the pion
from the B∗∗0 decay as a kaon leads to Q values above
the range considered for B∗∗0s candidates.

The results of the fits are listed in Tables III and IV
and shown in Figs. 3 to 5. The correlations between fit
parameters are below 20% (30%) for the properties of the
B(5970)0 (B(5970)+), except for the correlation between
width and yield of 81% (76%).

To measure the relative rate of B and B∗∗0 mesons pro-
duction, we use the ratio between the sum of B0

1 and B0∗
2

meson yields reconstructed in the B∗∗0 → B+(∗)π− de-

cay, followed by the B+ → D
0
π+ decay, and B+ meson

yields reconstructed in the same final state. The con-
ditional probability for reconstructing a B∗∗0 meson if a
B+ meson is already reconstructed in a B∗∗0 → B(∗)+π−

event is determined from simulation. Under the assump-
tion of isospin symmetry, B∗∗0 mesons decay to B0π0

states in one third of the cases and are therefore not re-
constructed. After correcting for efficiency and for the
unreconstructed decays involving neutral pions, we find
that 19 ± 2(stat)% of the events with a B+ meson with
pT > 5 GeV/c contain a B∗∗0 meson.

TABLE III: Results of the simultaneous fits to the Q value
spectra. Uncertainties include the statistical contribution
only.

B1 B∗2 B(5970)

B∗∗0 Yield 3400 ± 400 5000 ± 200 2600 ± 700

Q (MeV/c2) 262.6 ± 0.8 317.8 ± 1.2 558 ± 5

Γ (MeV/c2) 20 ± 2 25 ± 3 65 ± 18

rprod 0.68± 0.12

B∗∗+ Yield 1300 ± 300 2000 ± 200 1400 ± 500

Q (MeV/c2) 260.4 ± 3.6 317.6 ± 1.1 541 ± 5

Γ (MeV/c2) 42 ± 11 16 ± 6 50 ± 20

rprod 1.4± 0.9

B∗∗0s Yield 188 ± 18 1160 ± 70

Q (MeV/c2) 10.37 ± 0.10 66.75 ± 0.13

Γ (MeV/c2) 0.7 ± 0.3 2.0 ± 0.4

rprod 0.18± 0.02

rdec 0.11± 0.03

TABLE IV: Correlations between parameters of the simulta-
neous fits to the Q value spectra.

Γ(B1) Q(B∗2 ) Γ(B∗2 ) rprod rdec

B∗∗0 Q(B1) 0.20 −0.15 0.29 0.23

Γ(B1) −0.14 −0.20 0.60

Q(B∗2 ) −0.17 0.33

Γ(B∗2 ) −0.44

B∗∗+ Q(B1) 0.75 −0.02 −0.77 0.87

Γ(B1) −0.06 −0.79 0.87

Q(B∗2 ) −0.02 0.03

Γ(B∗2 ) −0.93

B∗∗0s Q(B1) −0.02 0.00 0.00 −0.02 −0.02

Γ(B1) 0.00 0.05 0.51 0.17

Q(B∗2 ) 0.07 −0.03 0.04

Γ(B∗2 ) −0.32 0.35

rprod −0.08

IV. SYSTEMATIC UNCERTAINTIES

Several sources of systematic uncertainties are consid-
ered, including uncertainties on the absolute mass scale,
mass resolution, and the fit model. The size of system-
atic uncertainties considered are listed in Tables V to
VIII. The study of the mass-scale uncertainty was per-
formed in earlier B∗∗(s) analyses [21, 23] by reconstructing

ψ(2S) → J/ψ π+π− and D∗∗ → D(∗)+π− control chan-
nels and comparing the Q values observed in these with
the known values.

The detector resolution was studied in a previous
analysis [32], using final states with similar topology
and kinematic regime as in the present measurement.
The modes investigated included D∗+ → D0π+ and
ψ(2S) → J/ψ π+π− decays, with Q-values 6 MeV/c2
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TABLE V: Systematic and statistical uncertainties in the
B∗∗0 measurements.

Q (MeV/c2) Γ (MeV/c2) ∆m rprod

B1 B∗2 B1 B∗2 (MeV/c2)

Mass scale <0.2 <0.2 <- <- <0.1 <-

Resolution <0.1 <0.1 <1 <1 <0.1 <0.01

Backgr. model <0.1 <0.7 <3 <1 <0.6 <0.13

Broad B∗∗0 states <0.3 <0.6 <2 <4 <0.4 <0.20

Fit bias <- <- <- <1 <0.6 <0.02

Fit constraints <1.2 <0.3 <3 <1 <1.4 <0.45

Acceptance <- <- <- <- <- <0.07

Total systematic <1.3 <1.0 <5 <4 <1.7 <0.51

Statistical <0.8 <1.2 <2 <3 <1.4 <0.12

TABLE VI: Systematic and statistical uncertainties in the
B∗∗+ measurements.

Q (MeV/c2) Γ (MeV/c2) ∆m rprod

B1 B∗2 B1 B∗2 (MeV/c2)

Mass scale <1 <0.2 <- <- <1 -

Resolution <1 <0.1 <1 <1 <1 <0.1

Backgr. model <1 <0.5 <10 <6 <1 <0.5

Broad B∗∗+ states <1 <0.2 <3 <5 <1 <0.7

Fit bias <1 <0.3 <- <1 <1 <0.4

Fit constraints <2 <0.7 <8 <3 <3 <0.8

Acceptance <- <- <- <- <- <0.2

Total systematic <3 <0.9 <13 <8 <3 <1.2

Statistical <4 <1.1 <11 <6 <4 <0.9

and 310 MeV/c2, respectively. The method is improved
for the present analysis. First we rescale the mass reso-
lution of the simulation to match the resolution observed
in data, using a Q-value-dependent factor linearly in-
terpolated from the Q-values observed in the reference
channels. To estimate the systematic uncertainty of the
scale factor, we study its variation as a function of the
transverse momentum of the pion from the D∗+ meson
decay and of the pion pair from the ψ(2S) meson de-
cay. The chosen uncertainty is such that all determined
scale factors are within one standard deviation. A dif-
ference between simulation and experimental data is ex-
pected, because the simulation does not model accurately
the particle multiplicity of the data. Additional particles
present in data are expected to reduce the efficiency of
associating drift-chamber hits to the tracks. The loss of
hits worsens the mass resolution by 5% for B∗∗0,+ and
10% for B∗∗0s decays, both with an uncertainty of 5%.

The systematic uncertainty associated with possible
mismodelings of the background shape is estimated by
fitting with alternative background models and taking
the deviation of the results with respect to the default fit
as the uncertainty. For B∗∗0,+ mesons, the alternative
fit model is a polynomial function. For the B∗∗0s spec-
trum, a polynomial function one order higher than the

TABLE VII: Systematic and statistical uncertainties in the
B∗∗0s measurements.

Q (MeV/c2) Γ (MeV/c2) ∆m rprod rdec

Bs1 B∗s2 Bs1 B∗s2 (MeV/c2)

Mass scale <0.14 <0.14 <- <- <0.01 <- <-

Resolution <0.01 <0.01 <0.1 <0.2 <0.01 <0.01 <0.01

Bkg. model <0.01 <0.01 <0.1 <0.1 <0.01 <0.01 <0.01

Fit range <0.01 <0.01 <0.3 <0.1 <0.01 <0.02 <0.02

Fit bias <- <- <0.1 <- <- <- <-

Fit constr. <0.01 <0.03 <0.1 <0.1 <0.03 <0.01 <0.01

Acceptance <- <- <- <- <- <0.01 <0.01

Total syst. <0.14 <0.14 <0.3 <0.2 <0.03 <0.02 <0.02

Statistical <0.10 <0.13 <0.3 <0.4 <0.16 <0.02 <0.03

TABLE VIII: Systematic and statistical uncertainties in the
neutral and charged B(5970) measurements.

Q (MeV/c2) Γ (MeV/c2) Rel. yield

Neutr. Char. Neutr. Char. Neutr. Char.

Bkg. model 12 12 30 40 0.3 0.8

Fit bias - - 10 10 - -

Acceptance - - - - 0.1 0.1

Total syst. 12 12 31 40 0.3 0.8

Statistical 5 5 18 20 0.1 0.2

default model is used. Two broad B∗∗0,+ j = 1
2 states

are expected at similar masses as the two narrow B∗∗0,+

states, but predictions for their masses and widths vary
significantly. To assess a systematic uncertainty associ-
ated with the limited knowledge of resonance parameters
of broad states, we perform 100 fits with two additional
Breit-Wigner functions for these states in the fit model.
Their Q values are varied between 200 and 400 MeV/c2

and the widths between 100 and 200 MeV/c2. The
largest deviation in the estimate of each signal param-
eter with respect to the results of the default fit is taken
as systematic uncertainty. The mass spectrum of B∗∗0s

candidates is steeply rising at the kinematic threshold.
The default fit starts from 5 MeV/c2 using a relatively
simple background shape. The lower bound of the fit
is varied by ±5 MeV/c2 and the largest difference in fit
results with respect to the default fit is taken as an ad-
ditional uncertainty on the background model.

To test for biases in the fitting procedure, we simu-
late random mass spectra with known signal parameters
and fit them with the default model. Some of the fit pa-
rameter estimates show mild biases, which never exceed
30% of the statistical uncertainty. The estimates show-
ing nonzero biases are corrected for their bias and the full
size of the bias is assigned as a systematic uncertainty.
The assumed photon energy from the B∗ decay and the
branching fraction of the B∗2 decays are varied within
their uncertainties and the data are fit again. The de-
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viations in the measured parameters with respect to the
default results are taken as systematic uncertainties.

The relative acceptance between B(s)1 → B∗h,
B∗(s)2 → B∗h, and B∗s2 → Bh decays derived from simu-

lation varies between 0.9 and 1.1 for B∗∗0,+ mesons and
between 0.95 and 1.05 for B∗∗0s mesons. We assign a
relative uncertainty of 10% and 5%, respectively, on the
measurement of the relative branching fractions. The
conditional probability for reconstructing a B∗∗0 meson
if a B+ meson is already reconstructed depends on the
transverse momentum of the B∗∗0 mesons. The B∗∗0-
meson yields in data and simulated events are compared
in six independent ranges of transverse momentum. As
they are found to be consistent, no correction is applied.
To estimate a systematic uncertainty on the efficiency,
the ratio of yields is fit with a straight line, which is used
to weight the generated spectrum in the simulations. The
resulting 20 % change in efficiency is taken as the system-
atic uncertainty of the relative rate of B and B∗∗0 mesons
production.

The dominant systematic uncertainty for most quanti-
ties is the description of the background shape, except for
the Q values of the B∗∗0s states, where the mass-scale un-
certainty dominates. For the B∗∗0,+ states an additional
significant contribution comes from the fit constraints.
Because the B∗2 → Bπ signal is well separated from the
overlapping signals, the B∗2 properties are less affected by
this systematic uncertainty.

V. EVIDENCE FOR A B(5970) STATE

As a consistency check that the structure at Q ≈
550 MeV/c2 is not an artifact of the selection, we apply
to B+π+ combinations the same criteria as for the signal
sample. No structure is observed in the invariant-mass
distribution of the wrong-charge combinations as shown
in Fig. 3. Because B0 mesons oscillate this cross check
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FIG. 7: Spectra of Q value of B∗∗0,+ candidates in all the
considered decay channels with fit results for the broad struc-
ture overlaid. The upper panel shows the data summed over
decay channels and the deviations of these from the fit func-
tion, normalized to the fit uncertainty. The lower plot shows
the simultaneously-fit spectra separately.

cannot be done with B̄0π+ combinations. The new sig-
nal is verified to be robust against significant variations
of the selection requirements, as shown in Fig. 6, where
a requirement on the transverse momentum of the pion
instead of a requirement on the output of the neural net-
work is applied. As we have no sensitivity to determine
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whether the enhancement is caused by multiple overlap-
ping broad states or not, we treat it as a single resonance
in the following.

To determine the significance of the previously unob-
served broad structure, we use the difference ∆L in loga-
rithms of the likelihood between data fits that include or
not the B(5970)0,+ signal component. The B(5970)0 and
B(5970)+ candidates are fit simultaneously with common
signal parameters. Using random distributions generated
from the background distribution observed in the data,
we determine the probability p of observing a value of
∆L at least as large as that observed in data. We re-
strict the fit range to Q > 400 MeV/c2 because at lower
values a broad structure would be indistinguishable from
the background of the B∗∗0,+ states. In the range stud-
ied, the background is described by a straight line. In
the fits that allow for the presence of a B(5970)0,+ com-
ponent, the signal yield is floating freely, and the mean
and width are constrained to be in the ranges 450 to 650
MeV/c2 and 10 and 100 MeV/c2, respectively, to avoid
having a large fraction of the signal outside the fit range.
The result of the fit to data is shown in Fig. 7. We ob-
serve a ∆L value of 18 in data. A higher value is obtained
in only 128 of 1.2 × 107 background-only pseudoexperi-
ments, corresponding to a statistical significance of 4.4σ.

To check the systematic effect of the background model
on the significance, we repeat the significance evaluation
with the default fit model of the B∗∗0,+ measurement,
but with fixed B∗∗0,+ signal parameters. Independent
parameters are used for the B(5970)0 and B(5970)+ sig-
nals. With the alternative fit model we obtain a signifi-
cance higher than with the default fit.

VI. RESULTS

We measure the masses and widths of fully recon-
structed B∗∗0, B∗∗+, and B∗∗0s mesons. The sample con-
tains approximately 8400 B∗∗0 decays, 3300 B∗∗+ decays,
and 1350 B∗∗0s decays. The results are shown in Table IX.
In addition, the relative production rates of B1 and B∗2
multiplied by their branching fraction into the analyzed
decay channels are measured and their values are listed
in Table X. The determination of the relative branch-
ing fractions of the B∗s2 state as defined in Eq.(2) yields
rdec = 0.11± 0.03 (stat)± 0.02 (syst).

We also determine how many narrow B∗∗0 states, B0
1

and B∗02 , are produced per B+ meson. For B+ mesons
having a transverse momentum larger than 5 GeV/c the
fraction is 19± 2(stat)± 4(syst)%.

The properties of the previously unobserved reso-
nance are measured for neutral and charged states sep-
arately in a sample that contains 2600 B(5970)0 and
1400 B(5970)+ decays as shown in Table XI. Assum-
ing a decay through the Bπ channel, we calculate the
masses m(B(5970)0) = 5978 ± 5 ± 12 MeV/c2 and
m(B(5970)+) = 5961±5±12 MeV/c2. For a decay to the
B∗π final state the masses would increase by mB∗ −mB .

TABLE IX: Measured masses and widths of B∗∗(s) mesons.
The first contribution to the uncertainties is statistical; the
second is systematic.

Q (MeV/c2) Γ (MeV/c2)

B0
1 262.6± 0.8± 1.3 20± 2± 5

B∗02 317.8± 1.2± 1.2 26± 3± 3

B+
1 261 ± 4 ± 3 42± 11± 13

B∗+2 317.9± 1.1± 0.9 17± 6± 8

B0
s1 10.37± 0.10± 0.14 0.7± 0.3± 0.3

B∗0s2 66.75± 0.13± 0.14 2.0± 0.4± 0.2

TABLE X: Measured B∗∗(s) meson relative production rates
times branching fractions as defined in Eq.(1) of B∗∗(s) mesons.
The first contribution to the uncertainties is statistical; the
second is systematic.

rprod

B∗∗0 0.66± 0.12± 0.51

B∗∗+ 1.8 ± 0.9 ± 1.2

B∗∗s 0.18± 0.02± 0.02

Assuming heavy-quark symmetry, we compare these
results to the corresponding values observed for excited
D mesons. States at higher masses than D∗∗ excitations
have been observed [2]. The D(2750) meson, with a nat-
ural width of 63± 6 MeV/c2, a mass about 750 MeV/c2

higher than the D∗ mass, and its decay modes to both
Dπ and D∗π final states, is a possible candidate for being
a radial excitation of the D∗ meson. By analogy, a ra-
dial excitation of the B∗ would have a mass of about
6075 MeV/c2 and would decay to B∗π and Bπ final
states. A radial excitation of the B ground state would
then be expected at approximately 6030 MeV/c2. As
it would decay to a B∗π state but not to a Bπ state,
it would be reconstructed with an invariant mass of ap-
proximately 5985 MeV/c2.

According to Ref. [41], the only predicted states with
mass values between the B∗∗0,+ masses and 6100 MeV/c2

are the two radial excitations 2(1S0) and 2(3S1), with
masses of 5890 and 5906 MeV/c2, respectively. The next
orbital B excitation, expected to decay by D-wave having
L = 2, is at a mass near 6100 MeV/c2.

TABLE XI: Observed resonance parameters of the broad
structures. The first contribution to the uncertainties is sta-
tistical; the second is systematic.

Q (MeV/c2) Γ (MeV/c2)

B(5970)0 558± 5± 12 70± 18± 31

B(5970)+ 541± 5± 12 60± 20± 40

We measure the rates of the broad structures relative
to the decays B∗2 → Bπ in the range pT > 5 GeV/c of
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the produced B meson,

r′prod(B(5970)) =
σ(B(5970))

σ(B∗2)

B(B(5970)→ B(∗)+π−)

B(B∗2 → Bπ)
,

(3)
to be r′prod(B(5970)0) = 0.5± 0.1 (stat)± 0.3 (syst) and

r′prod(B(5970)+) = 0.7± 0.2 (stat)± 0.8 (syst).
We calculate the masses of all states from the measured

Q-values using known values [2] for the pion, kaon, and
B-meson masses and mB∗0,+ −mB0,+ . For the B(5970)
state we assume the decay to Bπ. The results are shown
in Table XII.

TABLE XII: Masses of the observed states. The first contri-
bution to the uncertainties is statistical; the second is system-
atic; the third is the uncertainty on the known values for the
B-meson masses and for the mass difference mB∗0,+ −mB0,+ .

m (MeV/c2)

B0
1 5726.4± 0.8± 1.3± 0.4

B∗02 5736.6± 1.2± 1.2± 0.2

B+
1 5726 ± 4 ± 3 ± 2

B∗+2 5737.1± 1.1± 0.9± 0.2

B0
s1 5828.3± 0.1± 0.1± 0.4

B∗0s2 5839.7± 0.1± 0.1± 0.2

B(5970)0 5978± 5± 12

B(5970)+ 5961± 5± 12

VII. SUMMARY

Using the full CDF Run II data sample, we measure the
masses and widths of B∗∗(s) mesons. For the first time, we

observe exclusively reconstructed B∗∗+ mesons and mea-
sure the width of the B0

1 state. The results are consistent
with, and significantly more precise than previous deter-
minations based on a subset of the present data [21, 23],
which are superseded. The results are also generally com-
patible with determinations by the D0 [20] and LHCb
experiments [25]. The only exception is the remaining
discrepancy with the D0 measurement of the mass dif-
ference between B0

1 and B0∗
2 mesons, which increases to

4.1σ.
The properties of the B∗∗0 and B∗∗+ states are con-

sistent with isospin symmetry. The measured B∗∗0,+

masses are in agreement with the HQET predictions
in Ref. [6]. The QCD string calculation in Ref. [15]
matches data with a deviation of about 10 MeV/c2.

The lattice calculation in Ref. [8] predicts the B1 mass
accurately with a deviation of only 6 MeV/c2, but is
off by 35 MeV/c2 for the B∗+2 mass. The heavy-
quark symmetry and potential-model-based predictions
in Ref. [12] and [10] are about 30 MeV/c2 above and
below the measured values, respectively. Our measure-
ment is consistent with the HQET predictions of the
B∗∗ widths in Refs. [4, 5] and the Γ(B∗2) prediction in
Ref. [11]. The B∗∗0s masses are described by HQET calcu-
lations [6, 7, 12] within 3–6 MeV/c2. The lattice calcula-
tions in Ref. [8] agree with the measurements within the-
oretical uncertainties. The HQET prediction in Ref. [4]
and predictions based on chiral theory [14], potential
models [11], and lattice calculations [9] are about 30–
60 MeV/c2 too high. The B∗∗0s width predictions by
HQET [4, 12] are 1–2 MeV/c2 above the measurements
while the prediction of Γ(B∗0s2 ) in Ref. [11] agrees well
with the experimental result.

We observe a previously-unseen charged and neutral
Bπ signal with a significance of 4.4σ. Interpreting it
as a single state, we measure the properties of the new
resonance for charged and neutral Bπ combinations and
find them to be statistically consistent as expected by
isospin symmetry. The observed masses of these new
states, dubbed B(5970), are close to the values predicted
for radial excitations of B mesons
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